Abstract

A conjugate composed of tetraaza[6.1.6.1]paracyclophane bearing carboxylic acids and lectin, a carbohydrate binding protein, was prepared. The specific saccharide-binding abilities as well as the secondary structural features of the lectin were not disturbed, when the cyclophane were covalently bound to the lectin. The conjugate was found to act as a water-soluble host for inclusion of anionic guest molecules such as 6-p-toluidino-naphthalene-2-sulfonate (TNS) and 8-anilinonaphthalene-1-sulfonate (ANS) in aqueous acetate buffer (pH 4.0) with binding constants of 4.2 × 104 and 1.5 × 104 dm3 mol−1, respectively. The obtained binding constants were much larger than those by untethered water-soluble cyclophane. A highly desolvated microenvironment was provided by the cyclophane cavity on the protein surfaces so that the tight host–guest interaction, which brought about the marked motional repression of the entrapped guests, became effective. The conjugate also showed molecular discrimination capabilities toward the anionic guests through electrostatic repulsion mechanism originating from acid-dissociation equilibrium of carboxylic acids of the cyclophane branches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.