Abstract
Herein, we report the synthesis of a new prodrug system consisting of regioselectively addressable functionalized templates bearing multiple pheophorbide A moieties for use in photodynamic therapy. These coupling reactions were achieved using copper-free "click" chemistry, namely a strain-promoted azide-alkyne cycloaddition. This new design was used to obtain well-defined quenched photosensitizer prodrugs with perfect knowledge of the number and position of loaded photosensitizers, providing structures bearing up to six photosentitizers and two PEG chains. These conjugates are ideally quenched in their native state regarding their fluorescence emission (up to 155 ± 28 times less fluorescent for an hexasubstituted conjugate than a monosubstituted non-quenched reference compound) or singlet oxygen production (decreased 8.7-fold in the best case) when excited. After 2 h of proteolytic activation, the fluorescence emission of a tetrasubstituted conjugate was increased 17-fold compared with the initial fluorescence emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.