Abstract

CPEC is a potent inhibitor of CTP synthetase and causes depletion of CTP and dCTP pools. AraC is an analog of dCyd and a chemotherapeutic agent. Here, we demonstrate that, upon incubation with CPEC, both the anabolism and cytostatic effect of AraC in SK-N-BE(2)c neuroblastoma cells were increased. Cotreatment of CPEC (50-250 nM) and AraC (37.5-500 nM) decreased the 4-day ED(50) value for AraC 2- to 8-fold in the SK-N-BE(2)c cell line, while pretreatment with CPEC followed by incubation with AraC alone decreased the 4-day ED(50) value for AraC 1- to 19-fold. Preincubation of SK-N-BE(2)c cells with 100 nM CPEC followed by incubation with 500 nM [(3)H]AraC increased the total amount of AraC nucleotides and incorporation of [(3)H]AraC into DNA by 392% and 337%, respectively, compared to non-CPEC-treated cells. When 20 nM [(3)H]AraC was used, the maximum incorporation of [(3)H]AraC into DNA was 1,378% compared to non-CPEC-treated cells. Incorporation of AraC into DNA correlated well with the accumulation of cells in S phase of the cell cycle caused by CPEC. DNA synthesis was almost completely inhibited (>91%) when 100 nM CPEC and 500 nM AraC were combined. CPEC alone and the combination of CPEC and AraC increased caspase-3 activity 3-fold, indicating induction of apoptosis in SK-N-BE(2)c cells. In contrast, AraC alone did not induce caspase-3 activity. Our results demonstrate that low concentrations of CPEC profoundly increase the cytostatic properties of AraC toward SK-N-BE(2)c human neuroblastoma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call