Abstract

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call