Abstract

We previously reported that thromboxane (TX)A2 synthesis and receptor blockade prevented recombinant human erythropoietin (rhEPO)-induced hypertension in chronic renal failure rats. The present study was designed to investigate the effect of a cyclooxygenase inhibitor, acetylsalicylic acid (ASA), on blood pressure, renal function, and the concentration of eicosanoïds and endothelin-1 (ET-1) in vascular and renal tissues of rhEPO-treated or rhEPO-untreated uremic rats. Renal failure was induced by a 2-stage 5/6 renal mass ablation. Rats were divided into 4 groups: vehicle, rhEPO (100 U/kg, s.c., 3 times per week), ASA (100 mg x kg(-1) x day(-1), and rhEPO + ASA; all animals were administered drugs for 3 weeks. The TXA2- and prostacyclin (PGI2)-stable metabolites (TXB2 and 6-keto-PGF1alpha, respectively), as well as ET-1, were measured in renal cortex and either the thoracic aorta or mesenteric arterial bed. The uremic rats developed anemia, uremia, and hypertension. They also exhibited a significant increase in vascular and renal TXB2 (p < 0.01) and 6-keto-PGF1alpha (p < 0.01) concentrations. rhEPO therapy corrected the anemia but aggravated hypertension (p < 0.05). TXB2 and ET-1 tissue levels further increased (p < 0.05) whereas 6-keto-PGF1alpha was unchanged in rhEPO-treated rats compared with uremic rats receiving the vehicle. ASA therapy did not prevent the increase in systolic blood pressure nor the progression of renal disease in rhEPO-treated or rhEPO-untreated uremic rats, but suppressed both TXB2 and 6-keto-PGF1alpha tissue concentrations (p < 0.05). ASA had no effect on vascular and renal ET-1 levels. Cyclooxygenase inhibition had no effect on rhEPO-induced hypertension owing, in part, to simultaneous inhibition of both TXA2 and its vasodilatory counterpart PGI2 synthesis, whereas the vascular ET-1 overproduction was maintained. These results stress the importance of preserving PGI2 production when treating rhEPO-induced hypertension under uremic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call