Abstract

This study investigated the release of prostaglandin E2 (PGE2) from cartilage following an impact load in vitro and the possible chondroprotective effect of cyclooxygenase-2 (COX-2) inhibition using non-steroidal anti-inflammatory drugs (NSAIDs).Explants of human articular cartilage were subjected to a single impact load in a drop tower, and then cultured for 6 days in the presence of either a selective COX-2 inhibitor (celecoxib; 0.01, 0.1, 1.0 and 10 μM) or a non-selective COX inhibitor (indomethacin; 0.1 and 10 μM). The concentrations of PGE2 and glycosaminoglycans (GAGs), a measure of cartilage breakdown, were measured in the explant culture medium at 3 and 6 days post-impact. Apoptotic cell death was measured in frozen explant sections by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method.PGE2 levels were increased by more than 20-fold in the medium of explants at both 3 (p = 0.012) and 6 days (p = 0.004) following impact, compared with unloaded controls. In the presence of celecoxib and indomethacin, the PGE2 levels were reduced in a dose-related manner. These inhibitors, however, had no effect in reducing the impact-induced release of GAGs from the cartilage matrix. Addition of celecoxib and indomethacin significantly reduced the number of trauma-induced apoptotic chondrocytes in cartilage explant sections.In this study, a marked increase in PGE2 was measured in the medium following an impact load on articular cartilage, which was abolished by the selective COX-2 inhibitor, celecoxib, and non-selective indomethacin. These inhibitors reduced chondrocyte apoptosis but no change was observed in the release of GAGs from the explants, suggesting that the COX/PGE2 pathway is not directly responsible for cartilage breakdown following traumatic injury. Our in vitro study demonstrates that it is unlikely that COX-2 inhibition alone would slow down or prevent the development of secondary osteoarthritis.

Highlights

  • Articular cartilage is a highly specialised connective tissue that covers the ends of long bones in diarthrodial joints

  • In the presence of celecoxib and indomethacin, the prostaglandin E2 (PGE2) levels were reduced in a dose-related manner

  • In the presence of celecoxib and indomethacin, the PGE2 levels were reduced in a dose-related manner both at 3 days and, more significantly, 6 days (Figure 1b)

Read more

Summary

Introduction

Articular cartilage is a highly specialised connective tissue that covers the ends of long bones in diarthrodial joints. The main protoeoglycan is aggrecan, which comprises a protein core highly substituted with polysulfated glycosaminoglycan (GAG) side chains. Traumatic joint damage, such as may be sustained in a road traffic accident or a sporting injury, is a known risk factor for the subsequent development of secondary osteoarthritis (OA) [1]. The processes resulting in cartilage breakdown following injury and the ability of the tissue to repair itself are poorly understood. Studies have shown elevated levels of breakdown products from cartilage matrix many years after injury [2,3,4]. The relationship between joint injury and OA development has been

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call