Abstract

We investigated the mechanism of ethanol-induced pulmonary vasoconstriction in lambs, by a pharmacological approach. We chronically instrumented 28 lambs to determine whether phentolamine (alpha-block), propranolol (beta-block), promethazine and cimetidine (H1- and H2-block), high-dose indomethacin, or low- and high-dose meclofenamate (cyclooxygenase block) altered the vasoconstriction. Ethanol alone increased pulmonary vascular resistance from 0.14 to 0.49 Torr.ml-1.kg-1.min (U). Only indomethacin (7-8 mg/kg po) and high-dose meclofenamate (7-8 mg/kg iv) abolished the pulmonary vascular response to ethanol infusion. Pulmonary vascular resistance was 0.14 U after ethanol plus indomethacin and was 0.2 U after ethanol plus high-dose meclofenamate (P = NS vs. base line). Low-dose meclofenamate (2 mg/kg) attenuated the vasoconstrictor response. Systemic vascular resistance increased moderately after ethanol and had a similar pattern of inhibition by cyclooxygenase blockade. Cardiac output and heart rate decreased nearly significantly after ethanol (P less than 0.06), a tendency that was also ablated by cyclooxygenase inhibition. Thus the acute cardiocirculatory response to ethanol involves an intact prostaglandin synthase system in lambs. To our knowledge, these data are the first documentation that cyclooxygenase enzyme blockade can eliminate the acute cardiac and vascular effects of ethanol in a whole-animal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call