Abstract

Cyclooxygenase-2 (COX-2) activity has been implicated in the pathogenesis of neuronal cell death in ischemia and other diseases, but the mechanism by which COX-2 exacerbates cell death is unknown. COX-2 activity is known to induce expression of cyclin D1 in neoplastic cells, and cyclin D1 expression can induce cell death in postmitotic neurons. In the present study, the role of COX-2 and cyclin D1 in neuronal cell death induced by anoxia and ischemia was examined. Treatment with the COX-2 specific inhibitor (NS 398 25 μM) and cyclin D1 inhibitor (flavopiridol 1 μM) increased neuronal survival and inhibited DNA fragmentation after anoxia. NS-398 suppressed anoxia-induced expression of cyclin D1. Flavopiridol inhibited the anoxia-induced increased expression of cyclin D1, but had no effect on COX-2 expression. Treatment with the selective COX-2 inhibitor, SC58125, had no affect on COX-2 expression but partially suppressed cyclin D1 expression in the cortex following middle cerebral artery occlusion in vivo. These results show that COX-2 activity is required for cyclin D1 expression after ischemia in vivo and anoxia in vitro. These data provide support for the hypothesis that cyclin D1 expression is an important mechanism by which COX-2 activity exacerbates ischemic neuronal death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.