Abstract

Up-regulation of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes has been reported in colorectal cancer. We aimed at evaluating the possible interaction between the nitric oxide and COX-2 pathways, and its effect on promoting tumor angiogenesis. Expression of iNOS, COX-2, vascular endothelial growth factor (VEGF), and CD31 was analyzed in tumor samples and corresponding normal mucosa obtained from 46 surgical specimens. We also evaluated iNOS activity, prostaglandin E(2) (PGE(2)), cyclic GMP and cyclic AMP production in the same specimens. Nitrite/nitrate levels, and PGE(2) and VEGF production were assessed in HCT116 and HT29 colon cancer cell lines after induction and selective inhibition of the two enzyme pathways. A significant correlation was found between iNOS and COX-2 immunohistochemical expression. PGE(2) production significantly correlated with iNOS activity and cGMP levels. A significant correlation was also found among PGE(2) production, microvessel density, and VEGF expression. Coinduction of both iNOS and COX-2 activities occurred after lipopolysaccharide (LPS) and epidermal growth factor (EGF) treatment in HCT116 and HT29 cells. Inhibition of iNOS by 1400W significantly reduced both LPS- and EGF-induced PGE(2) production. Treatment with LPS, EGF, and arachidonic acid significantly increased VEGF production in the iNOS-negative/COX-2-positive HT29 cells. This effect was completely reversed by treatment with the selective COX-2 inhibitor celecoxib. Our data showed a prominent role of nitric oxide in stimulating COX-2 activity in colorectal cancer. This interaction is likely to produce a cooperative effect in promoting angiogenesis through PGE(2)-mediated increase in VEGF production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call