Abstract

Interleukin (IL)-1beta is a proinflammatory cytokine implicated in several neurodegenerative disorders. Downstream actions of IL-1beta include production of prostaglandin (PG) E(2) by increasing expression of cyclooxygenase (COX) enzymes and prostaglandin E synthase (PGES) isoforms. We recently developed a transgenic mouse carrying a dormant human IL-1beta eXcisional Activation Transgene (XAT) for conditional and chronic up-regulation of IL-1beta in selected brain regions. This model is characterized by regionally specific glial activation, immune cell recruitment, and induction of cytokines and chemokines. Here, we aimed to elucidate the effects of long-term IL-1beta expression on the PGE(2) synthetic pathway and to determine the effects of PGs on inflammation and memory in our model. As expected, PGE(2) levels were significantly elevated after IL-1beta up-regulation. Quantitative real-time PCR analysis indicated significant induction of mRNAs for COX-1 and membranous PGES-1, but not COX-2 or other PGES isoforms. Immunohistochemistry revealed elevation of COX-1 but no change in COX-2 following sustained IL-1beta production. Furthermore, pharmacological inhibition of COX-1 and use of COX-1 knockout mice abrogated IL-1beta-mediated PGE(2) increases. Although COX-1 deficient mice did not present a dramatically altered neuroinflammatory phenotype, they did exhibit improved contextual fear memory. This data suggests a unique role for COX-1 in mediating chronic neuroinflammatory effects through PGE(2) production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.