Abstract

The Kalman filter associated with a discrete-time linear T-periodic system is tested. The problem considered is that of selecting an initial covariance matrix such that the periodic filter based on the first T values of the Kalman filter gain is stabilizing. Sufficient conditions are given that hinge on the cyclomonotonicity of the solution of the periodic Riccati equation. Potential applications are found in filter design, quasi-linearization techniques for the periodic Riccati equation, and the design of receding-horizon control strategies for periodic and multirate systems. When specialized to time-invariant systems, the results give rise to new sufficient conditions for the cyclomonotonicity of the solutions of the time-invariant Riccati equation and the existence of periodic stabilizing feedback.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call