Abstract

The Kalman filter associated with a discrete-time linear T-periodic system is tested. The problem considered is that of selecting an initial covariance matrix such that the periodic filter based on the first T values of the Kalman filter gain is stabilizing. Sufficient conditions are given that hinge on the cyclomonotonicity of the solution of the periodic Riccati equation. Potential applications are found in filter design, quasi-linearization techniques for the periodic Riccati equation, and the design of receding-horizon control strategies for periodic and multirate systems. When specialized to time-invariant systems, the results give rise to new sufficient conditions for the cyclomonotonicity of the solutions of the time-invariant Riccati equation and the existence of periodic stabilizing feedback.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.