Abstract
Maturation of oocytes and early embryo development are regulated precisely by numerous factors at transcriptional and posttranslational levels through precise mechanisms. N6-methyladenosine (m6A) is the most common modification in mRNA which regulates RNA metabolism and gene expression. However, the role of RNA m6A on porcine oocyte maturation and early embryogenesis is largely unknown. Here, we found that oocytes treated with cycloleucine (CL), an RNA m6A inhibitor, express impaired cumulus expansion, increased production of reactive oxygen species (ROS) in the mitochondria, and delayed maturation of oocytes by disrupting spindle organization and chromosome alignment. Also, CL halted the development of embryos at the 4-cell stage and resulted in low-quality blastocysts. Furthermore, CL treatment decreased the RNA m6A, H3K4me3, and H3K9me3 levels, but increased the acetylation level of H4K16 during parthenogenetic embryonic development in pigs. Single-cell RNA-seq (scRNA-seq) analysis further revealed that CL treatment dramatically up-regulated the expression of metabolism-related genes (SLC16A1, and MAIG3 etc.) and maternal related genes, including BTG4, WEE2, and BMP15 among others, at the blastocyst stage. Taken together, inhibition of RNA m6A by CL impaired meiosis of oocytes and early embryonic development of porcine via RNA m6A methylation, histone modifications, and altering the expression of metabolism-related genes in blastocysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.