Abstract

Primary amoebic meningoencephalitis (PAM) is a central nervous system (CNS) disease caused by Naegleria fowleri that mainly affects children and young adults with fatal consequences in most of the cases. Treatment protocols are based on the combination of different antimicrobial agents, nonetheless there is the need to develop new anti-Naegleria compounds with low toxicity and full effects compared to the currently used drug combination. The marine environment is a well-established source of bioactive natural products. In this work, we have focused on the structure of Laurencia cyclolaurane-type sesquiterpenes as potential chemical model against Naegleria species. The effects of debromolaurinterol (1) to induce PCD/apoptosis-like events in Naegleria fowleri have been evaluated, revealing that this compound induced reduction of ATP production showing a decrease of 99.98% in treated parasite cells. A SAR analysis have been supported with molecular modeling and analysis of the in silico ADME/Tox properties of the Laurencia sesquiterpenes debromolaurinterol (1), laurinterol (2) and allolaurinterol (3), which reinforce cyclolaurane metabolites as plausible molecular models to develop PAM treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.