Abstract

Fertilization of metaphase II-arrested mouse eggs results in resumption of meiosis and a decrease in both cdc2/cyclin B kinase and MAP kinase activities; the decrease in cdc2/cyclin B kinase activity precedes the decrease in MAP kinase activity. Cycloheximide treatment of metaphase II-arrested mouse eggs also results in resumption of meiosis but bypasses the fertilization-induced Ca2+ transient. However, it is not known if cycloheximide treatment results in the same temporal changes in cdc2/cyclin B kinase and MAP kinase activities that are intimately associated with resumption of meiosis. We report that cycloheximide-treated mouse eggs manifest similar temporal changes in the decrease in both cdc2/cyclin B kinase and MAP kinase activities that occur following fertilization, although cortical granule exocytosis is not stimulated. The decrease in cdc2/cyclin B kinase activity, however, does not seem to be required for the decrease in MAP kinase activity, since the decrease in MAP kinase activity still occurs in cycloheximide-treated eggs that are also incubated in the presence of nocodazole, which inhibits cyclin B degradation and hence the decrease in cdc2/cyclin B kinase. Following removal of these drugs, cdc2/cyclin B kinase activity remains high, MAP kinase activity increases to levels similar to that in the metaphase II-arrested eggs, and a spindle(s) forms with the chromosomes aligned on a metaphase plate. Results of these experiments suggest that some other protein with a relatively short half-life, e.g. cmos, a known upstream activator of MAP kinase, may be responsible for events leading to the decrease in MAP kinase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call