Abstract

Here, we report on structure-reactivity trends for cyclohexane oxidative dehydrogenation (ODH) with silica supported copper oxide catalysts as a function of surface structure. Copper oxide was supported on mesostructured KIT-6 silica at low surface densities <0.2Cu/nm2 using copper (II) nitrate, ammonium and sodium copper (II) ethylenediaminetetraacetate, and a hexanuclear copper (I) siloxide complex. Copper oxide surface structures were characterized by X-ray absorption spectroscopy as well as ambient and in situ diffuse reflectance UV–visible (DRUV–vis) spectroscopy to determine trends in copper oxide nuclearity. DRUV–vis spectroscopy identifies three copper species based on Cu2+ ligand to metal transfer (LMCT) bands at 238, 266, and >300nm as well as Cu+ LMCT bands at 235, 296, and 312nm. Counterintuitively, EXAFS analysis shows that the multinuclear precursor leads to fewer average Cu–Cu interactions than syntheses with mononuclear copper salt precursors. Turnover frequency and selectivity to benzene increase with decreasing copper oxide nuclearity, and thus the multinuclear precursor leads to the highest turnover frequency and benzene production. This work shows the variety of surface species that exist even at extremely low copper surface densities, control of which can improve reactivity of an atypical ODH catalyst up to rates comparable to benchmark vanadia catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.