Abstract

The effectiveness and limitations of density functional theory (DFT) calculations in the structural determination of complexed and conformationally flexible natural products were demonstrated using the cyclohelminthols CP-1 (1) CP-2 (2), CP-3 (3), and CP-4 (4) newly isolated from Helminthosporium velutinum yone96. Prior to DFT calculations, the structures were tentatively assigned using conventional spectroscopic analyses. The structures were verified with reference to DFT-derived 13C and 1H NMR chemical shifts, 3JHH and nJCH values, and electronic circular dichroism (ECD) spectra. The 13C chemical shift calculations were very effective for verifying the ring-structure moieties but less effective for verifying the geometry of the side chain in which the juncture asymmetric carbon (C-16) was apart from the ring-structure moiety. However, 1H chemical shift calculations compensated for the imperfection of the latter. ECD spectral calculations were used to determine the absolute configurations. Calculations for virtual simple model molecules enabled us to evaluate the reliability of the ECD spectral calculation and derive the chiral torsion responsible for the characteristic Cotton effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.