Abstract

Cyclodipeptide synthases (CDPSs) perform nonribosomal protein synthesis using two aminoacyl-tRNA substrates to produce cyclodipeptides. At present, there are no structural details of the CDPS:tRNA interaction available. Using AlbC, a CDPS that produces cyclo(l-Phe-l-Phe), the interaction between AlbC and its Phe-tRNA substrate was investigated. Simulations of models of the AlbC:tRNA complex, proposed by rigid-body docking or homology modeling, demonstrated that interactions with residues of an AlbC α-helix, α4, significantly contribute to the free energy of binding of AlbC to tRNA. Individual residue contributions to the tRNA binding free energy of the discovered binding mode explain well the available biochemical data, and the results of in vivo assay experiments performed in this work and guided by simulations. In molecular dynamics simulations, the phenylalanyl group predominantly occupied the two positions observed in the experimental structure of AlbC in the dipeptide intermediate state, suggesting that tRNAs of the first and second substrates interact with AlbC in a similar manner. Overall, given the high degree of sequence and structural similarity among the members of the CDPS NYH protein subfamily, the mechanism of the protein:tRNA interaction is expected to be pertinent to a wide range of proteins interacting with tRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call