Abstract

Water-soluble cyclodextrins (CDs) bearing two nitrogen atoms as metal coordinating sites have been synthesized. An appropriate phosphane could be included within their cavity through the primary face to form self-assembled PNN supramolecular edifices. Once the PNN ligands were coordinated to platinum, the resulting complexes proved to be very effective as catalysts in a domino reaction, where a Pt-catalyzed reduction of nitrobenzene was followed by a Paal-Knorr pyrrole reaction. In the nitrobenzene reduction, the modified CDs acted both as first- and second-sphere ligands. Contrary to an acyclic glucopyranose-based NN ligand unable to interact with a phosphane ligand, the CD-based PNN ligands stabilized the catalytic species in water by supramolecular means. Interestingly, the product and the water-soluble Pt-catalyst could be recovered in two different phases once the reaction was complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.