Abstract

Cyclodextrin-based metal-organic frameworks (CD-MOFs) are gaining traction in the realm of drug delivery due to their inherent versatility and potential to amplify drug efficacy, specificity, and safety. This article explores the predominant preparation techniques for CD-MOFs, encompassing methods like vapor diffusion, microwave-assisted, and ultrasound hydrothermal approaches. Native CD-MOFs present compelling advantages in drug delivery applications. They can enhance drug loading capacity, stability, solubility, and bioavailability by engaging in diverse interactions with drugs, including host-guest, hydrogen bonding, and electrostatic interactions. Beyond their inherent properties, CD-MOFs can be customized as drug carriers through two primary strategies: co-crystallization with functional components and surface post-modifications. These tailored modifications pave the way for controlled release manners. They allow for slow and sustained drug release, as well as responsive releases triggered by various factors such as pH levels, glutathione concentrations, or specific cations. Furthermore, CD-MOFs facilitate targeted delivery strategies, like pulmonary or laryngeal delivery, enhancing drug delivery precision. Overall, the adaptability and modifiability of CD-MOFs underscore their potential as a versatile platform for drug delivery, presenting tailored solutions that cater to diverse biomedical and industrial needs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.