Abstract

Here, we report a novel fluorescence method for the highly selective and sensitive detection of RNase H by combining the use of a dual-pyrene-labeled DNA/RNA duplex with supramolecular inclusion-enhanced fluorescence. Initially, the probe is in the “off” state due to the rigidness of the double-stranded duplex, which separates the two pyrene units. In the presence of RNase H, the RNA strand of the DNA/RNA duplex will be hydrolyzed, and the DNA strand transforms into a hairpin structure, bringing close the two pyrene units which in turn enter the hydrophobic cavity of a γ-cyclodextrin. As a result, the pyrene excimer emission is greatly enhanced, thereby realizing the detection of RNase H activity. Under optimal conditions, RNase H detection can be achieved in the range from 0.08 to 4 U/mL, with a detection limit of 0.02 U/mL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.