Abstract

Insoluble cyclodextrin polymers co-polymerized with multi-walled carbon nanotubes were synthesized by polymerizing β-cyclodextrin with acid-functionalized multi-walled carbon nanotubes and diisocyanate linkers; hexamethylene- and toluene-2,4-diisocyanate. The polymers are useful in removing some organic pollutants from water, and we now report the full characterization of these polymers using infrared spectroscopy (IR), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and thermal techniques such as thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The polymers could be synthesized as either powders or amorphous solids. Results of the IR analysis showed the presence of functional groups such as C O, C C, C H and C O, indicating that polymerization indeed took place. Characterization of the polymers by scanning electron microscopy and BET analysis showed that these polymers had a spongy appearance indicating a hierarchical pore structure. Incorporation of small amounts (<5%) of multi-walled nanotubes (MWNTs) improved the thermal stability of the polymers. This observation was further confirmed by differential scanning calorimetry (DSC) measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.