Abstract

In recent years, cyclodextrin polymeric nanoparticles have been designed to introduce new properties and extend their medical applications. Based on the features of cyclodextrins, we derivatized cross-linked cyclodextrin polymers with histidine or carcinine moieties. We found that amylases do not hydrolyze cyclodextrin polymers. The new polymers can form copper(II) complexes and may act as nanochelators to counteract copper(II) dyshomeostasis-related diseases. Furthermore, the copper(II) complexes show superoxide dismutase activity, similar to free carcinine and histidine complexes. The antioxidant biological activity of the copper(II) complex formed in situ may protect cells from oxidative damage related to copper dyshomeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.