Abstract
A series of novel glutathione peroxidase (GPx) mimics based on organochalcogen cyclodextrin (CD) dimer were synthesized. Their GPx-like antioxidant activities were studied using hydrogen peroxide H2O2, tert-butylhydroperoxide (BHP), and cumene hydroperoxide (CHP) as substrates and glutathione as thiol co-substrate. The results showed that 6A,6B-ditelluronic acid-A,6B′-tellurium bridged γ-cyclodextrin (6-diTe-γ-CD) had the highest peroxidase activity, which was ~670-fold higher than ebselen, a well-known GPx mimic. Reduction of lipophilic CHP often proceeded much faster than reduction of the more hydrophilic H2O2 or BHP, which cannot bind into the hydrophobic interior of the CD. The biological activities were also evaluated for their capacity to protect mitochondria against ferrous sulfate/ascorbate-induced oxidative damage. 6-diTe-γ-CD was the best inhibitor which significantly suppressed ferrous sulfate/ascorbate-induced cytotoxicity as determined by swelling of mitochondria, lipid peroxidation and cytochrome c oxidase activity. Our data suggests that 6-diTe-γ-CD has potential pharmaceutical application in the treatment of ROS-mediated diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inclusion Phenomena and Macrocyclic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.