Abstract

Adsorption plays an important role in seawater desalination, wastewater treatment, and, especially, boron removal from natural aqueous systems. In this paper, two sponge-like multifunctional polymers based on a cyclodextrin backbone were synthesized and used as adsorbents for the removal of boron, methylene blue (MB), methyl orange (MO), and phenol. The syntheses were carried out by esterification, atom transfer polymerization, and nucleophilic addition reaction. The polymers were characterized by 1H NMR spectroscopy, IR spectroscopy, XRD, XPS, and SEM. The performance of the two different adsorbents was investigated considering the effect of pH, initial concentration, and the anions and cations in an aqueous solution of borates. The experimental data were fitted with an adsorption isothermal model, adsorption kinetic model and other models. Both adsorbents exhibited high adsorption capacities (B: 31.05 mg/g and 20.45 mg/g, MB: 29.43 mg/g and 32.29 mg/g, MO: 47.36 mg/g and 49.23 mg/g, phenol: 5.04 mg/g and 4.35 mg/g, respectively) and a fast adsorption rate. The boron adsorption was found to be an exothermic process. The adsorbents show promising potential for the removal of boron and benzene-containing organic pollutants from aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call