Abstract
We developed a synthetic strategy to form cyclodextrin-based intrananogap particles (CIPs) with a well-defined ∼1 nm interior gap in a high yield (∼97%), and were able to incorporate 10 different Raman dyes inside the gap using the cyclodextrin-based host-guest chemistry, leading to strong, reproducible, and highly multiplexable surface-enhanced Raman scattering (SERS) signals. The average SERS enhancement factor (EF) for CIPs was 3.0 × 109 with a very narrow distribution of the EFs that range from 9.5 × 108 to 9.5 × 109 for ∼95% of the measured particles. Remarkably, 10 different Raman dyes can be loaded within the nanogap of CIPs, and 6 different Raman dye-loaded CIPs with little spectral overlaps were distinctly detected for cancer cell imaging applications with a single excitation source. Our synthetic strategy provides new platforms in precisely forming plasmonic nanogap structures with all key features for widespread use of SERS including strong signal intensity, reliability in quantification of signal and multiplexing capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.