Abstract
Detection of relationship between two time series is so important in different scientific fields. Most common techniques are usually sensitive to stationarity or normality assumptions. In this research, a new copula-based method (cyclocopula) is introduced to detect the relationship between two cylostationary time series with fractional Brownian motion (fBm) errors. The performance of the proposed method is studied by employing numerous simulated datasets. The applicability of the introduced approach is also investigated in real-world problems. The numerical and applied studies verify the performance of the introduced technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.