Abstract
Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a two-electron multicenter (2e/mc) π−π bonding between two π-stacked phenalenyl units. The 2e/mc bonded π-dimers are close in energy to the σ-dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding “smart” π-functional materials. Here, we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair and boat conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair conformation involves a 2e/4c π−π bonded structure, whereas the boat conformation involves a 2e/12c π−π bonded structure on their potential energy surfaces. The global minimum for the chair conformation is the σ-bonded structure, whereas it is the π−π bonded structure for the boat conformation. The chair conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat conformation should be observable by SQUID and ESR. According to the energy differences of the respective σ- and π-dimers of the two conformations and the UV−vis calculations, the color of the chair conformation is expected to become darker, whereas that of the boat conformation should become lighter with increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.