Abstract

Anthropogenic impacts can significantly alter stream nutrient and dissolved organic carbon (DOC) delivery and composition. Nutrient and DOC cycling in headwater streams, however, are linked via a variety of complex feedbacks that are, in part, influenced by DOC composition emphasizing the need to investigate coupled nutrient–DOC interactions. This study assessed differential incorporation and mineralization of 13C labeled glucose and vanillin by heterotrophic microbes within epilithic biofilm communities in four temperate headwater streams spanning a 100-fold range in total dissolved nitrogen and soluble reactive phosphorous concentrations. The substrates were traced via 13C analyses of DOC, dissolved inorganic carbon, bulk biofilm, and individual biofilm phospholipid fatty acids (PLFA) to assess total incorporation of the substrates and the distribution of substrate use within the heterotrophic community. Results indicate greater nutrient uptake by high nutrient streams with glucose additions relative to vanillin additions and support the hypothesis that nutrient retention in high nutrient streams is hampered by a lack of labile C sources. Vanillin-derived C uptake was only detectable in PLFA from the highest nutrient stream and was dominated by eukaryotic organisms, likely including fungi. This suggests biofilms in high nutrient streams are better adapted to access relatively slow turnover substrates perhaps due to their composition and overall structure. PLFA-based glucose use efficiencies were greatest in the lowest nutrient stream supporting the hypothesis that labile DOC sources are used more efficiently by heterotrophs in less impacted streams, while biofilms of high nutrient streams are better adapted to utilizing a wider array of DOC sources. This adaption is likely a result of exposure to the lower quality DOC pools in high-nutrient streams resulting from high DOC uptake supported, in part, by fast turnover autochthonous sources of DOC. Nutrient retention in nutrient-rich streams, however, is still likely limited by readily bioavailable DOC leading to lower nutrient retention and downstream nutrient enrichment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call