Abstract

Abstract. Atmospheric deposition of nitrogen (N) has exceeded its demand for plant increment in forest ecosystems in Germany. High N inputs increased plant growth, the internal N cycling within the ecosystem, the retention of N in soil and plant compartments, and the N output by seepage water. But the processes involved are not fully understood, notably the effect of fructification in European beech (Fagus sylvatica L.) on N fluxes. The frequency of fructification has increased together with air temperature and N deposition, but its impact on N fluxes and the sequestration of carbon (C) and N in soils have been hardly studied. A field experiment using 15N-labeled leaf litter exchange was carried out over a 5.5-year period at seven long-term European beech (Fagus sylvatica L.) monitoring sites to study the impact of current mast frequency on N cycling. Mean annual leaf litterfall contained 35 kg N ha−1, but about one-half of that was recovered in the soil 5.5 years after the establishment of the leaf litter 15N exchange experiment. In these forests, fructification occurred commonly at intervals of 5 to 10 years, which has now changed to every 2 years as observed during this study period. Seed cupules contributed 51 % to the additional litterfall in mast years, which creates a high nutrient demand during their decomposition due to the very high ratios of C to N and C to phosphorus (P). Retention of leaf litter 15N in the soil was more closely related to the production of total litterfall than to the leaf litterfall, indicating the role of seed cupules in the amount of leaf N retained in the soil. Higher mast frequency increased the mass of mean annual litterfall by about 0.5 Mg ha−1 and of litterfall N by 8.7 kg ha−1. Mean net primary production (NPP) increased by about 4 %. Mean total N retention in soils calculated by input and output fluxes was unrelated to total litterfall, indicating that mast events were not the primary factor controlling total N retention in soils. Despite reduced N deposition since the 1990s, about 5.7 out of 20.7 kg N ha−1 deposited annually between 1994 and 2008 was retained in soils, notably at acid sites with high N/P and C/P ratios in the organic layers and mineral soils, indicating P limitation for litter decomposition. Trees retained twice as much N compared to soils by biomass increment, particularly in less acidic stands where the mineral soils had low C/N ratios. These results have major implications for our understanding of the C and N cycling and N retention in forest ecosystems. In particular the role of mast products in N retention needs more research in the future.

Highlights

  • Nitrogen (N) was commonly a limiting nutrient in the pristine temperate forests

  • Mean annual aboveground net primary production (NPP) of the seven sites amounted to 11.8 Mg dry mass ha−1 out of which 57 % was contributed by tree increment and 43 % by total litterfall (Table 3)

  • The higher mast frequency has increased the amount of C and N additions to the soil, which increased the internal cycling between plants and soil including decomposition

Read more

Summary

Introduction

Nitrogen (N) was commonly a limiting nutrient in the pristine temperate forests. several decades of elevated atmospheric deposition of N and acidity changed biogeochemical N cycles in temperate forest ecosystems in large regions of the Northern Hemisphere. Atmospheric depositions decreased soil pH (Hallbäcken and Tamm, 1986) and affected the N cycling through reduced decomposition across a wide range of forest ecosystems (Persson and Wirén, 1993; Janssens et al, 2010). High atmospheric deposition of N removed N deficiency in forest ecosystems (LeBauer and Treseder, 2008), increased foliar N contents, and reduced the contents of foliar phosphorus (P) (Braun et al, 2010; Talkner et al, 2015). In combination with high inputs of base cations (Meesenburg et al, 2009), N deposition accelerated forest growth to a certain degree (De Vries et al, 2014; Etzold et al, 2020). In contrast to reduced sulfur emission since the beginning of the 1980s (Engardt et al, 2017), N deposition still exceeds the N demand for forest growth in unmanaged and most managed forests (Meesenburg et al, 2016; Fleck et al, 2019)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.