Abstract

Competitive cyclists seek to maximize their efficiency by minimizing the influence of resistive forces. At the high speeds maintained during competition, aerodynamic drag is the primary resistive force. This paper investigates the influence of a cyclist’s body position using models of aerodynamic drag and elucidates the time benefit of various body positions. Mathematical models from prior work, which use cyclist mass and body position angles, have been used to determine the projected frontal area of a cyclist and the aerodynamic drag. Graphical representation of the non-linear relationship between aerodynamic drag and an increasing velocity are also provided. Finally, simulations are produced for a 40 km time trial course, and the results indicate a maximum performance increase of 20.71% due entirely to rider body position when exerting 400 W. We conclude aerodynamic efficiency is crucial in competitive cycling, and its significant correlation with rider body position should not be ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call