Abstract

Eukaryotic cells become committed to proliferate during the G1 phase of the cell cycle. In budding yeast, commitment occurs when the catalytic subunit of a protein kinase, encoded by the CDC28 gene (the homolog of the fission yeast cdc2+ gene), binds to a positively acting regulatory subunit, a cyclin. Related kinases are also required for progression through the G1 phase in higher eukaryotes. The role of cyclins in controlling G1 progression in mammalian cells was tested by construction of fibroblasts that constitutively overexpress human cyclin E. This was found to shorten the duration of G1, decrease cell size, and diminish the serum requirement for the transition from G1 to S phase. These observations show that cyclin levels can be rate-limiting for G1 progression in mammalian cells and suggest that cyclin synthesis may be the target of physiological signals that control cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.