Abstract

Cyclin-dependent kinase 5 (Cdk5) is a regulator of axon growth and radial neuronal migration in the developing mouse brain, and it plays critical roles in cortical structure formation and brain function. However, the function of Cdk5 in cortico-cortical and cortico-sensorimotor networks in the adult remains largely unknown. In this study, we investigated the function of Cdk5 in the rostral secondary motor cortex (M2) in the male mouse using CRISPR/Cas9 gene editing and somatic brain transgenesis, to produce M2-specific knockdown of Cdk5 in neurons in the male mouse. Mouse deficient in Cdk5 in the M2 exhibited a reduction in both the number of functional synapses and the total basal dendritic length, as well as motor dysfunction. Furthermore, whole-cell patch-clamp recordings in layer V green fluorescent protein (GFP)-tag pyramidal neurons revealed a decrease in the frequency and amplitude of miniature EPSCs and miniature IPSCs, as well as a reduction in the population synaptic responses (fEPSPs) in these mice. Specifically, retrograde labeling showed that Cdk5 knockdown in the M2 caused a reduction in long-range projections to the M2 from the thalamus/prefrontal cortex and claustrum. Collectively, our findings show a new regulatory role of Cdk5 in neural circuit maintenance, and that the changes in neural transmission and circuits in the mice with Cdk5 knockdown in the M2 likely contribute to the motor dysfunction in these animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call