Abstract

Cyclin-dependent kinase 5 (Cdk5)/p35 is a serine/threonine kinase, and its activity is detected primarily in postmitotic neurons. Mice lacking Cdk5/p35 display migration defects of the cortical neurons in the cerebrum and cerebellum. In this study, we demonstrate that although most brainstem nuclei are found in their proper positions, the motor nucleus of the facial nerve is ectopically located and neurons of the inferior olive fail to position correctly, resulting in the lack of their characteristic structures in the hindbrain of Cdk5-/- mice. Despite the defective migration of these neurons, axonal exits of the facial nerve from brainstem and projections of the inferior cerebellar axons appear unchanged in Cdk5-/- mice. Defective neuronal migration in Cdk5-/- hindbrain was rescued by the neuron-specific expression of Cdk5 transgene. Because developmental defects of these structures have been reported in reeler and Dab1 mutant mice, we analyzed the double-null mutants of p35 and Dab1 and found more extensive ectopia of VII motor nuclei in these mice. These results indicate that Cdk5/p35 and Reelin signaling regulates the selective mode of neuronal migration in the developing mouse hindbrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.