Abstract

The timing mechanism for mitotic progression is still poorly understood. The spindle assembly checkpoint (SAC), whose reversal upon chromosome alignment is thought to time anaphase [1-3], is functional during the rapid mitotic cycles of the Drosophila embryo; but its genetic inactivation had no consequence on the timing of the early mitoses. Mitotic cyclins-Cyclin A, Cyclin B, and Cyclin B3-influence mitotic progression and are degraded in a stereotyped sequence [4-11]. RNAi knockdown of Cyclins A and B resulted in a Cyclin B3-only mitosis in which anaphase initiated prior to chromosome alignment. Furthermore, in such a Cyclin B3-only mitosis, colchicine-induced SAC activation failed to block Cyclin B3 destruction, chromosome decondensation, or nuclear membrane re-assembly. Injection of Cyclin B proteins restored the ability of SAC to prevent Cyclin B3 destruction. Thus, SAC function depends on particular cyclin types. Changing Cyclin B3 levels showed that it accelerated progress to anaphase, even in the absence of SAC function. The impact of Cyclin B3 on anaphase initiation appeared to decline with developmental progress. Our results show that different cyclin types affect anaphase timing differently in the early embryonic divisions. The early-destroyed cyclins-Cyclins A and B-restrain anaphase-promoting complex/cyclosome (APC/C) function, whereas the late-destroyed cyclin, Cyclin B3, stimulates function. We propose that the destruction schedule of cyclin types guides mitotic exit by affecting both Cdk1 and APC/C, whose activities change as each cyclin type is lost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.