Abstract
This paper is concerned with the quadratic perturbations from one parameter family of generic reversible quadratic vector fields having a simple center and an invariant straight line. It is shown that the system can generate at least two limit cycles. As the parameter is rational, we propose a procedure for finding the upper bound to cyclicity of period annulus based on the Chebyshev criterion for Abelian integrals together with one rationalizing transformation. To illustrate our approach, we determine the cyclicity of three representative reversible systems. Our results may be viewed as a contribution to proving the conjecture on cyclicity proposed by Iliev [1998].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.