Abstract

A ring is of finite type if it has only finitely many maximal right ideals, all two-sided. In this article, we give a complete set of invariants for finite direct sums of cyclically presented modules over a ring R of finite type. More generally, our results apply to finite direct sums of direct summands of cyclically presented right R-modules (DCP modules). Using a duality, we obtain as an application a similar set of invariants for kernels of morphisms between finite direct sums of pair-wise non-isomorphic indecomposable injective modules over an arbitrary ring. This application motivates the study of DCP modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.