Abstract

The effects of mechanical strain on monocyte chemotactic protein-1 (MCP-1) secretion were examined on human endothelial cells (ECs) grown on a flexible membrane base. MCP-1 release into culture medium from strained ECs was demonstrated to be time and strain dose dependent. Northern blot analysis demonstrated a mainly serum-independent 1.8-fold induction of MCP-1 mRNA levels in ECs strained at 15 kPa compared with unstrained controls. ECs treated with actinomycin D abolished this strain-induced expression. Strained ECs at the periphery of wells showed higher MCP-1 gene expression than ECs at the center. Pretreatment of ECs with either cytochalasin D or phalloidin did not abolish strain-induced gene expression. ECs pretreated with stretch-activated ion channel blocker gadolinium or with ryanodine to deplete intracellular stored Ca2+ strongly inhibited the strain-induced MCP-1 levels. We conclude that 1) cyclical strain can modulate the secretion of MCP-1 in a dose-dependent manner, 2) strain-induced MCP-1 production is mediated by increasing MCP-1 mRNA levels via transcription, 3) cytoskeletal rearrangement is not essential for this strain-induced MCP-1 expression, and 4) both Ca2+ influx via stretch-activated ion channels and intracellular Ca2+ release contribute to the strain-induced effect. Such strain-induced MCP-1 secretion might contribute to the trapping of monocytes in the subendothelial space to initiate atherogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call