Abstract

Induced seismicity associated with fluid injection has raised serious concerns for the safety and efficiency of geo-energy systems. Cyclic injection has recently been proposed as an alternative injection scheme to reduce the large magnitude injection-induced seismicity. However, the influence of cyclic injection on the activation of natural fractures in granite and the resulting seismic risk is not yet clear. This study investigates the injection-induced activation of a critically stressed natural fracture in a granite core sample, particularly focusing on the comparison between monotonic and cyclic water injection under pressure-controlled and volume-controlled conditions. Experimental results show that the acceleration and deceleration of fracture slip are modulated by the shear stress imbalance between the fixed shear stress and the evolving frictional strength of the fracture. Fracture slip affects the fluid pressure distribution on the fracture, which in turn regulates the frictional strength of the fracture. At a small total shear displacement (i.e., ~ 0.9 mm in this study), cyclic injection with a restricted peak injection pressure results in aseismic fracture slip at much smaller peak slip rates compared to that during the monotonic injection. On the one hand, the more uniform reduction in effective normal stress caused by cyclic injection encourages slow and stable fracture slip, characterized by the smaller peak slip rates. On the other hand, the flowback of injected fluid or suspension of injection could prevent the occurrence of fast-accelerated fracture slip during cyclic injection. However, the fracture can become unstable when it has experienced a considerable amount of total shear displacement (larger than ~ 0.9 mm in this study), and likely gained a significantly enhanced permeability. Continued injection after the unstable shut-in stage, signified by an unusual increase in slip rate and an accelerated drop in injection pressure, could result in rapid and unstable fracture slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.