Abstract

A glassy carbon (GC) surface modified with monolayer of 4-bromophenyl was examined as voltammetric electrode for some redox systems. The modified electrode exhibited very slow electron transfer in comparison to the unmodified surface by factors which varied with the redox systems. However, after scanning the modified electrode in 0.1 M tetrabutylammonium tetrafluoroborate (TBABF4) in acetonitrile from 0.4 to −1.1 V vs. Ag/AgCl for 20–25 cycles, the modified electrode showed much faster electron transfer kinetics, e.g., the results for Fe(CN)6 3−/4− were approaching those observed with unmodified surfaces. The effect is attributed to an apparently irreversible structural change in the 4-bromophenyl monolayer, which increases the rate of electron tunneling. The transition to the conducting state is associated with electron injection into the monolayer and causes a significant decrease in the calculated HOMO-LUMO gap for the monolayer molecule. Once the monolayer is switched to the conducting state, it supports rapid electron exchange with the redox system, but not with dopamine, which requires adsorption to the electrode surface. A conductive surface modified electrode may have useful properties for electroanalytical applications and possibly in electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call