Abstract

Observations are reported on high-density polyethylene (HDPE) and nanocomposite, where HDPE matrix is reinforced with montmorillonite (MMT) nanoclay, in uniaxial cyclic tensile tests with various cross-head speeds ranging from 1 to 50 mm/min. Each cycle of deformation involves tension up to the maximal strain ϵ max = 0.1 and retraction down to the zero stress. The study focuses on low-cycle deformation programs with N = 5 cycles in each test. A constitutive model is derived for the viscoplastic response of polymers at three-dimensional cyclic deformations with small strains. Given a strain rate and a maximum strain, the stress–strain relations involve eight material constants that are found by fitting the experimental data. Good agreement is demonstrated between the observations and the results of numerical simulation. It is shown that the rate of cyclic deformation affects the adjustable parameters in a physically plausible way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.