Abstract

We report the direct detection of cyclic diameter variations in the Mira variable χ Cygni. Interferometric observations made between 1997 July and 1999 September, using the Cambridge Optical Aperture Synthesis Telescope (COAST) and the William Herschel Telescope (WHT), indicate periodic changes in the apparent angular diameter at a wavelength of 905 nm, with amplitude 45 per cent of the smallest value. The star appears largest at minimum light. Measurements made at a wavelength of 1.3 μm over the same period suggest much smaller size changes. This behaviour is consistent with a model in which most of the apparent diameter variation at 905 nm is caused by a large increase in the opacity of the outer atmospheric layers (which is mostly owing to titanium oxide) near minimum light, rather than by physical motions of the photosphere. The 1.3-μm waveband is relatively uncontaminated by TiO, and so much smaller size changes would be expected in this band. The latest non-linear pulsational models predict maximum physical size close to maximum light, and increases in opacity near minimum light that are too small to reproduce the diameter variation seen at 905 nm. This suggests either that the phase-dependence of the model pulsation is incorrect, or that the opacities in the models are underestimated. Future interferometric monitoring in uncontaminated near-infrared wavebands should resolve this question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call