Abstract

SIRT5 is one of the seven members (SIRT1-7) of the mammalian sirtuin family of protein acyl-lysine deacylase enzymes. In recent years, important regulatory roles of SIRT5 in (patho)physiological conditions (e.g. metabolism and cancer) have been increasingly demonstrated. For a better biological understanding and therapeutic exploitation of the SIRT5- catalyzed deacylation reaction, more effort on identifying potent and selective SIRT5 inhibitors beyond those currently known would be rewarding. In the current study, we would like to see if it would be possible to develop potent and selective SIRT5 inhibitory lead compounds with a novel structural scaffold than those of the currently known potent and selective SIRT5 inhibitors. In the current study, six N-terminus-to-side chain cyclic tripeptides (i.e. 8-13) each harboring the thiourea-type catalytic mechanism-based SIRT5 inhibitory warhead Nε-carboxyethylthiocarbamoyl- lysine as the central residue were designed, synthesized by the Nα-9- fluorenylmethoxycarbonyl (Fmoc) chemistry-based solid phase peptide synthesis (SPPS) on the Rink amide 4-methylbenzhydrylamine (MBHA) resin, purified by the semi-preparative reversedphase high performance liquid chromatography (RP-HPLC), characterized by the high-resolution mass spectrometry (HRMS); and were evaluated by the in vitro sirtuin inhibition assay and the in vitro proteolysis assay. Among the cyclic tripeptides 8-13, we found that 10 exhibited a potent (IC50 ~2.2 μM) and selective (≥60-fold over the SIRT1/2/3/6-catalyzed deacylation reactions) inhibition against the SIRT5-catalyzed desuccinylation reaction. Moreover, 10 was found to exhibit a ~42.3-fold stronger SIRT5 inhibition and a greater proteolytic stability than its linear counterpart 14. With a novel and modular structural scaffold as compared with those of all the currently reported potent and selective SIRT5 inhibitors, 10 could be also a useful and feasible lead compound for the quest for superior SIRT5 inhibitors as potential chemical/pharmacological probes of SIRT5 and therapeutics for human diseases in which SIRT5 desuccinylase activity is upregulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.