Abstract

Although the important role of cell intercalation within a collective has long been recognized particularly for morphogenesis, the underlying mechanism remains poorly understood. Here we investigate the possibility that cellular responses to cyclic stretching play a major role in this process. By applying synchronized imaging and cyclic stretching to epithelial cells cultured on micropatterned polyacrylamide (PAA) substrates, we discovered that uniaxial cyclic stretching induces cell intercalation along with cell shape change and cell-cell interfacial remodeling. The process involved intermediate steps as previously reported for cell intercalation during embryonic morphogenesis, including the appearance of cell vertices, anisotropic vertex resolution, and directional expansion of cell-cell interface. Using mathematical modeling, we further found that cell shape change in conjunction with dynamic cell-cell adhesions was sufficient to account for the observations. Further investigation with small-molecule inhibitors indicated that disruption of myosin II activities suppressed cyclic stretching-induced intercalation while inhibiting the appearance of oriented vertices. Inhibition of Wnt signaling did not suppress stretch-induced cell shape change but disrupted cell intercalation and vertex resolution. Our results suggest that cyclic stretching, by inducing cell shape change and reorientation in the presence of dynamic cell-cell adhesions, can induce at least some aspects of cell intercalation and that this process is dependent in distinct ways on myosin II activities and Wnt signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call