Abstract

Vascular smooth muscle cell (VSMC) phenotypic modulation plays a pivotal role in atherothrombotic diseases. Thrombin generation at the surface of VSMCs and activation of integrin mechanotransduction pathways represent potential mechanisms. Here, we examine whether mechanical stretch increases thrombin generation on cultured rat aortic VSMCs. The integrin α(v)β(3) antagonist peptide (cRGDPV) dose-dependently decreased thrombin generation without stretch. Static stretch (5%, 1 Hz) failed to modify the thrombin-forming capacity of VSMCs, whereas 10% cyclic stretch during 60 and 360 min enhanced integrin α(v)β(3) expression and thrombin generation at the surface of VSMCs by 30% without inducing apoptosis. Cyclic stretch also stimulated Src phosphorylation, cleavage of talin, and binding of prothrombin to VSMCs. Upregulation of α(v)β(3) expression, Src phosphorylation, and enhanced thrombin generation by cyclic stretch were abolished by cRGDPV and silencing RNA (siRNA) against α(v) as well as by selective inhibition of integrin α(v)β(3) inside-out signalling by a talin-siRNA. Complete abolition of stretch-induced VSMC-supported thrombin generation by the RGT peptide, which disrupts the interaction of Src with the β(3) cytoplasmic tail, demonstrates the link between outside-in pathways involving β(3)-Src interaction and thrombin activity dependent on inside-out signalling. These data show that the contribution of cyclic stretch to VSMC-supported thrombin generation is driven by the integrin α(v)β(3) signalling pathway and suggest a role for pulsatility-induced intramural thrombin in VSMC-dependent vascular remodelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.