Abstract

ObjectiveTo investigate the effects of cyclic stretch-induced periodontal ligament cell (PDLC) exosomes on osteoblast differentiation, and to explore their regulatory role in mechanical force-related periodontal tissue remodeling. DesignAfter applying 20 % cyclic stretch loading to PDLCs, exosomes were extracted from the supernatant and co-cultured with osteoblasts to detect their effects on osteogenic differentiation. Meanwhile, the exosomes were sequenced by high-throughput microRNA sequencing for bioinformatic analysis and validation to explore exosome signaling pathways through miRNAs. ResultsCyclic stretch-induced PDLC exosomes could be taken up by osteoblasts and promoted osteogenic differentiation of osteoblasts, as demonstrated by the increased expression levels of osteogenesis-related factors and enhanced alkaline phosphatase (Alp) staining. Among the differentially expressed miRNAs between exosomes from cyclic stretch group and control group, miRNA-181d-5p was up-regulated significantly. The expression levels of osteogenesis-related factors and Alp staining were also increased in osteoblasts transfected with miR-181d-5p, and this effect might be related to the inhibitory role of exosomal miR-181d-5p on tumor necrosis factor (TNF). ConclusionsCyclic stretch-induced PDLC exosomes exhibited a promoting effect on osteogenic differentiation, which might result from the inhibition of TNF via exosomal miR-181d-5p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.