Abstract

AbstractIn this study, the effect of strain rate on the cyclic behaviour of 304L stainless steel is investigated to unveil the complex interrelationship between martensitic phase transformation, secondary hardening, cyclic deformation and fatigue behaviour of this alloy. A series of uniaxial strain controlled fatigue tests with varying cyclic strain rates were conducted at zero and non‐zero mean strain conditions. Secondary hardening was found to be closely related to the volume fraction of strain‐induced martensite which was affected by adiabatic heating due to increasing cyclic strain rates. Tests with lower secondary hardening rates maintained lower stress amplitudes during cyclic loading which resulted in longer fatigue lives for similar strain amplitudes. Fatigue resistance of 304L stainless steel was found to be more sensitive to changes in strain rate than the presence of mean strain. The mean strain effect was minimal due to the significant mean stress relaxation in this material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.