Abstract

Vascular smooth muscle cells (VSMC) may be subjected to mechanical forces, such as cyclic strain, that promote the formation of reactive oxygen species (ROS). We hypothesized that VSMC modulate this adverse milieu by increasing the expression of glucose-6-phosphate dehydrogenase (G6PDH) to maintain or restore intracellular glutathione (GSH) levels. Cyclic strain increased superoxide formation, which resulted in diminished GSH because of an increase in oxidized glutathione formation; there was also an increase in glutathione peroxidase and glutathione reductase activities. G6PDH activity and protein expression were enhanced concomitant with decreases in GSH levels and remained elevated until intracellular GSH levels were restored. To confirm the role of G6PDH in repleting GSH stores, we inhibited G6PDH activity with DHEA or inhibited enzyme expression with an antisense oligodeoxynucleotide. Diminished G6PDH activity or expression was associated with persistently depleted GSH levels and inhibition of the cyclic strain-mediated increase in glutathione reductase activity. These observations demonstrate that cyclic strain promotes oxidant stress in VSMC, which, in turn, induces G6PDH expression. When G6PDH is inhibited, GSH levels are not restored because of impaired glutathione reductase activity. These data suggest that G6PDH is a critical determinant of the response to oxidant stress in VSMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.