Abstract

Tissue-engineered blood vessels may provide a solution to the lack of suitable blood vessels for coronary and peripheral vessel bypass grafting. Cyclic strain can be used to provide a more physiological environment that may result in tissue that more closely resembles native artery. In this study, cyclic strain is applied to a collagen-based, tissue-engineered vascular medium. An increased culture time was used to allow the tissue to adhere to the silastic sleeve and to eliminate longitudinal compaction. Cyclic strain improved tissue strength through increased collagen content as well as some radial tissue compaction. Mechanical stimulation promoted a more contractile phenotype and led to a greater contractile response to the vasoconstrictor endothelin-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.