Abstract
Cation-driven and anion-driven electrochemomechanical deformations (ECMD) in electrodeposited polypyrrole (PPy) films have been investigated by means of cyclic voltammetry and cyclic step-voltammetry (CSV). The film deposited from hydrochloric acid (PPyCl) expanded upon anodic reaction (anodic expansion) while that deposited from dodecyl-benzene sulfonic acid (PPyDBS) exhibited cathodic expansion. In the case of the film deposited from p-phenol sulfonic acid (PPyPPS), it was found to show the anodic expansion at 600 mV (vs Ag wire as a reference electrode) along with the cathodic contraction at -800 mV in CSV. The film obtained from the same lot, however, showed cathodic contraction and anodic expansion only by changing the oxidative potential from 600 mV to -100 mV. This phase inversion indicates that not only the polymerization electrolyte but also the redox potential determines the (de)insertion of ions in the PPyPPS film. Contractive electrochemical creeping was only observed in PPyPPS film in chloride salt electrolytes, indicating that the cation insertion induces the deinsertion of initial-dopant anion from the film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.