Abstract

Offshore wind turbines are subjected to combined static and cyclic loads due to its self weight, wind, current and waves. For the design of support structures, a point of concern is whether the highly varying loads may cause cyclic degradation of the soil leading to a permanent undesired pile settlement and tilting for the wind turbine. In particular during a severe storm, the large cyclic loads are being more critical as the wind and waves are typically from a single direction. The DTU 10MW wind turbine supported by a jacket at 33 m water depth is considered in this study, where the piles are axially loaded in order to bear the moment under wind and wave actions. This paper investigates the cyclic loads using traditional linear irregular waves and fully nonlinear irregular waves realized from the wave solver Ocean-Wave3D previously validated until near-breaking wave conditions. This study shows that the nonlinear irregular waves introduce more extreme cyclic loads, which result in significantly larger pile settlement than using linear wave realizations. For the case in this study, linear wave theory underestimates pile settlement at least 30% compared to nonlinear wave realizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call